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The size consistency of various multireference coupled electron pair approaches (MRCEPA) is
analysed. These methods include the MRCEPA0, MR averaged coupled pair functional
(MR-ACPF), MR averaged quadratic coupled cluster (MR-AQCC), MR (singles and doubles)
CEPA (MRDCEPA) and the recently proposed MR averaged CEPA (MR-ACEPA) methods. Test
calculations on the O2 dimer show that a correct treatment of the variationally included
(VI) terms such as in the MRDCEPA and MR-ACEPA methods is necessary for obtaining
nearly size-consistent results. On the other hand, the results strongly suggest that it is im-
possible to obtain exact size consistency with any method employing the diagonal shift for-
malism. The analysis also shows that the size consistency error is not significantly affected
by the exclusion principle violating (EPV) terms.
Keywords: MRCEPA; MRDCEPA; Size consistency; Diagonal shift; Electron correlation;
Multireference methods; Ab initio calculations; Quantum chemistry; Coupled cluster.

Over the years various extensions of single reference (SR) methods such as
coupled electron pair approaches (CEPA1) or coupled pair functional
(CPF)1,2 have been developed in order to remedy the size consistency errors
inherent to the multireference configuration interaction (MRCI) method.
Examples are the MRCEPA0 3, MR-ACPF 4, MR-AQCC 5, MRDCEPA 6 and the
recently proposed MR-ACEPA 7 methods. In a recent attempt to formulate a
multireference coupled cluster (MRCC) method8, full configuration interac-
tion (CI) results were used to judge their performance6–8. However, al-
though these MRCEPA methods show a much better performance than
MRCI with respect to approximating MRCC or full CI results, not much at-
tention was paid to their size consistency. In this paper an analysis of the
behaviour with respect to the size consistency is presented, which shows
that the methods mentioned above are very different in this respect even if
they yield relatively accurate representations of potential energy curves for
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some model systems in the bonding region. In this analysis the secular
equations for a dimer AB are considered, where AB consists of two non-
interacting monomers A and B. The size consistency is checked by studying
the conditions under which these dimer secular equations are separable
into the monomer secular equations.

THE MRCEPA METHOD

The MRCEPA versions discussed here may be described by the following
system of equations6,7

〈 − 〉 = 〈 − − 〉 =Φ Ψ Φ ΨI IH E H E EP P
C| $ | | $ |0 0 (1a)

〈 − + 〉 = 〈 − − 〉 + =Φ Ψ Φ ΨJ J J J JH E K H E E K cQ Q
C| $ | | $ |0 0 , (1b)

where

Ψ Φ Φ= +∑ ∑c cI I
I

J J
J

P Q (2)

and ΦI
P and ΦJ

Q are reference (P-space) and excited (Q-space) CFs, respec-
tively. The interacting space of the Q-space is called the R-space. The refer-
ence space is assumed to be complete, i.e., we have a complete active space
(CAS) reference set. Following the CEPA philosophy the missing unlinked
contributions of the R-space functions are simulated by including the diag-
onal shift KJ in Eq. (1b) in order to restore the size consistency as much as
possible.

A further division of the excitations is made according to the excitation
class (k,l)6. The excitation class of a function is defined by the number of
holes k in the inactive orbital space (0 ≤ k ≤ 2) and by the number of parti-
cles l in the virtual orbital space (0 ≤ l ≤ 2).

Since Eqs (1) are homogeneous, the normalisation is arbitrary. For our
purpose it is convenient to use intermediate normalisation, using either the
projection of Ψ to the reference space or the CASSCF function as the refer-
ence function Ψ0

| | | | |Ψ Φ Φ Ψ Φ0
proj P P

P

P

P

〉 ≡ 〉 = 〉〈 〉 = 〉
∈ ∈
∑ ∑0 I I
I

I I
I

c with 〈 〉 =Ψ Ψ0
proj

0
proj| 1 (3a)

or

| | | |Ψ Ψ Φ0
var CASSCF CASSCF P

P

〉 ≡ 〉 = 〉 = 〉
∈
∑0 cI I
I

with 〈 〉 =Ψ Ψ0
var

0
var| 1 . (3b)
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Equation (3a) is used for the MRCEPA0, MRDCEPA and MR-ACEPA meth-
ods, whereas Eq. (3b) is used for the MR-ACPF and MR-AQCC methods.

In the following, relaxation effects in the reference coefficients in the
dimer calculation with respect to the monomer results are neglected. As a
consequence the secular equations for the reference CFs may be combined
into one equation, which is given by:

〈 − − 〉 = 〈 〉 − =∑0 0 00| $ | | $ |H E E c H EJ J
J

C
Q

CΨ Φ (4)

The secular equations for the excitations ΦJ
Q are given by:

〈 − − + 〉 =Φ ΨJ JH E E KQ
C| $ |0 0

or, splitting off the diagonal

〈 〉 + 〈 〉 + − + =′ ′
′ ≠
∑Φ Φ Φ ∆J J J J
J J

J J JH c H c E E KQ Q Q
C| $ | | $ | ( )0 0 , (5a)

where

∆E E EJ J= − 0 (5b)

and E0 and EJ are the energies of Ψ0 and ΦJ
Q , respectively.

The correlation energy is divided into class contributions according to

E k l
lk

C =
==
∑∑ ε( , )

0

2

0

2

(6a)

with (Eqs (1a) and (4))

ε( , ) | $ | ( , )k l c H k lJ J
J

= 〈 〉∑ 0 ΦQ , (6b)

where only those terms are included for which J corresponds to a function
within class (k,l). Since the reference space is complete, there are no ΦJ

Q ( , )0 0
and ε(0,0) = 0.

In the following the effect of the truncation of the exponential form of
the wave function6 is represented by introducing the topological matrices Tkl

for excitation class (k,l), defined by (Eq. (13) of lit.7)

T k p l q p q Tpq
kl

pq
kl= + ≤ + ≤ > >1 2 2 0 0if and and or otherwise( ), = 0 , (7)
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where k and p denote numbers of holes and l and q denote numbers of par-
ticles. In the following, these matrices will be used to relate the dimer
MRCEPA function to the product function ΨAΨB, where ΨA and ΨB are the
monomer MRCEPA functions. This product function should be rigorously
size-consistent if the diagonal shifts for the dimer are additive.

The various possibilities for choosing the MRCEPA variants may be con-
cisely represented by introducing the shift matrices Ukl which select the cor-
relation energy contributions which are to be included in the diagonal shift
for a class (k,l) excitation ΦJ k lQ ( , ):

K k l U r sJ rs
kl

rs

( , ) ( , )= ∑ ε . (8)

The secular equation for ΦJ k lQ ( , ), Eq. (5a), then reads

〈 〉 + 〈 ′ ′ 〉 +′ ′
′ ≠
∑Φ Φ ΦJ J J J
J J

k l H c k l H k lQ Q Q( , )| $ | ( , )| $ | ( , )0
′ ′

∑
k l

+ − +





=∑c E E U r sJ J rs
kl

rs

∆ C ε( , ) 0 . (9)

In the MRCEPA0, MR-ACPF and MR-AQCC approaches the shift is inde-
pendent of the excitation class. In the MRCEPA0 method the shift is equal
to the total correlation energy EC, i.e. U rs

kl = 1 for all k, l, r and s. In the
MR-ACPF and MR-AQCC methods the exclusion principle violating (EPV)
terms are avoided in an average way by using a damping factor dn depend-
ing on the total number of correlated electrons n: U rs

kl = dn .
However, a consequence of taking the U-matrix elements to be independ-

ent of the indices is that part of the Q-space excitations will also contribute
to the diagonal shifts. Therefore redundancies are introduced, since the Q-
space correlation energy contributions to the diagonal shifts originate from
excitations which do contribute to the secular equations explicitly. In the
MRDCEPA and MR-ACEPA methods, these variationally included (VI) terms
are excluded from contributing to the shift.

In the MRDCEPA method EPV effects are ignored, whereas in the
MR-ACEPA method the EPV corrections depend on the excitation class and
on the numbers of electrons in the inactive and in the active orbital spaces.
The formulas used are analogous to the damping factors used in the
MR-ACPF and MR-AQCC methods.
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We then have (for all values of k, l, r and s)

MRCEPA0: U rs
kl = 1 (10a)

MR-ACPF: U drs
kl

n= ACPF (10b)

MR-AQCC: U drs
kl

n= AQCC (10c)

MRDCEPA: U Trs
kl

rs
kl= −1 (10d)

MR-ACEPA: ( )U T d kl rsrs
kl

rs
kl

n ni a
= −1 , ( , )MR -ACEPA , (10e)

where ni and na are the numbers of inactive and active electrons, respec-
tively, and n = ni + na. The expressions for d kl rsn ni a, ( , )MR ACEPA− are given in Table I
of lit.7

The use of Eq. (10d) or (10e) implies that the VI contributions are treated
correctly, i.e., the redundancies are avoided by only admitting correlation
energy contributions to the diagonal shift originating from excitations
within the R-space.

SIZE CONSISTENCY

General Considerations

We consider two noninteracting monomers A and B. The dimer is denoted
by AB. If the dimer wave function is size-consistent and localised orbitals
are used, the secular equations for the dimer may be separated into the cor-
responding monomer equations. This will be possible if the coefficients for
the dimer function may be written as products of the coefficients for the
monomer functions. Therefore we start with the product ΨAΨB where ΨA

and ΨB are determined by the MRCEPA equations for the subsystems A and
B, respectively.

The subsystem MRCEPA functions are denoted by

| | |Ψ Α 〉 = 〉 + 〉∑0A A Ac klmklm
klm

| | |Ψ Β 〉 = 〉 + 〉∑0B B Bc pqnpqn
pqn

, (11)
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where kl denotes the excitation class for A, m is the index corresponding to
an inidividual excitation on A within class (k,l), pq denotes the excitation
class for B and n is the index corresponding to an individual excitation on
B within class (p,q).

The product function ΨAΨB contains higher (3- and 4-fold) excitations
with respect to the dimer reference set. Those functions which correspond
to an excitation class (r,s) with r > 2 or s > 2 do not appear in the MRCEPA
function for the dimer and therefore we project them out. The function
used for investigating the separability of the MRCEPA secular equations for
the dimer is then defined by

Ψ Ψ ΨAB
a

A B= $P , (12)

where $Pa projects to the space spanned by the MRCEPA CFs for the dimer.
The projection is realised by using the topological matrices Tkl as defined by
Eq. (7)

Ψ ΑΒ = 〉 + 〉∑| , | ,0 0 0A B A A Bc klmklm
klm

+ c pqnpqn
pqn

B A B| ,0 〉∑ +

+ 〉∑∑∑∑ T c c klm pqnpq
kl

klm pqn
nmpqkl

A B A B| , . (13)

In the following we will use this function in the MRCEPA secular equa-
tions for the dimer. The size consistency is then checked by verifying
whether these equations are separable into the corresponding MRCEPA
monomer equations.

The Secular Equation for the Reference Space

The reference space secular equation for the dimer is given by

〈 + − − 〉 =0 0 00
A B

A B C
AB, | $ $ |H H E E Ψ . (14)

We now evaluate Eq. (14) by substituting Eq. (13).
Since a CAS reference space is also used for the dimer, the reference func-

tion |0A, 0B〉 satisfies the size consistency condition E E E0 0 0= +A B . The con-
tribution of |0A,0B〉 in ΨAB to Eq. (14) is thus given by

〈 + − − 〉 = + − − = −0 0 0 00 0 0 0
A B

A B C
A B A B

C C, | $ $ | ,H H E E E E E E E . (15)
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The local excitations in ΨAB yield

c H H klm c Hklm
klm

pqn
A A B

A B
A B B A B

A〈 + 〉 + 〈 +∑ 0 0 0 0 0, | $ $ | , , | $ $H pqn
pqn

B
A B| ,0 〉 =∑

= 〈 〉 + 〈 〉 =∑ ∑c H klm c H pqnklm
klm

pqn
pqn

A A
A

A B B
B

B0 0| $ | | $ |

= + = +∑∑ ε εA B
C
A

C
B( , ) ( , )k l p q E E

pqkl

. (16)

The nonlocal excitations |klmA,pqnB〉 in Eq. (13) involve excitations on
both subsystems simultaneously and therefore they are at least doubly ex-
cited with respect to any reference CF. They involve dispersion-type excita-
tions such as |1,1,mA〉 |1,1,nB〉 or charge-transfer excitations like |2,0,mA〉
|0,2,nB〉 . All corresponding H-matrix elements in Eq. (14) only involve
integrals of the kind (iAjA/kBlB) or (iAkB/jAlB) which vanish if the subsystems
are far apart. Therefore the nonlocal excitations do not interact with any
reference CF and, consequently, they do not contribute to Eq. (14)

T c c H H E E klm pqnpq
kl

klm pqn
nm

A B A B
A B C

A B〈 + − − 〉∑∑ 0 0 0, | $ $ | ,
pqkl
∑∑ = 0 . (17)

By combining Eqs (15), (16) and (17) we find

〈 + − − 〉 = − + + =0 0 00
A B

A B C
AB

C C
A

C
B, | $ $ |H H E E E E EΨ (18)

or

E E EC C
A

C
B= + . (19)

This result shows that EC is additive and therefore the dimer secular equa-
tion for the reference function is separable.

The Secular Equations for the Local Excitations

The next step is to evaluate the secular equations for the local excitations
|klmA,0B〉 , again by substituting the explicit expression for ΨAB, Eq. (13). The
secular equation for an excitation localised on A is given by

〈 + − − + 〉 =∑klm H H E E U r srs
kl

rs

A B
A B C

AB, | $ $ ( , )|0 00 ε Ψ . (20)

If the subsystems are far apart, the same reasoning as above may be used
to show that all nonvanishing contributions are as follows.
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Contributions from $H A :

〈 〉 = 〈 〉klm H klm HA B
A

A B A
A

A, | $ | , | $ |0 0 0 0

〈 ′ ′ ′ 〉 = 〈 ′ ′ ′ 〉klm H k l m klm H k l mA B
A

A B A
A

A, | $ | , | $ |0 0 . (21a)

Contributions from $H B :

〈 〉 =klm H klm EA B
B

A B B, | $ | ,0 0 0

T klm H klm pqn T H pqnpq
kl

pq
kl〈 〉 = 〈 〉A B

B
A B B

B
B, | $ | , | $ |0 0 . (21b)

Contributions from the scalar part − − +∑E E U r srs
kl

rs
0 C ε( , ):

The only contribution comes from |klmA,0B〉 . Since the nonlocal excita-
tions do not contribute to the correlation energy, we have ε(r,s) = εA(r,s) +
εB(r,s). Therefore the scalar contribution may be written as

− − + =∑E E U r srs
kl

rs
0 C ε( , )

− − − − + +∑ ∑E E E E U r s U r srs
kl

rs
rs
kl

rs
0
A

C
A

0
B

C
B ε εΑ Β( , ) ( , ) . (21c)

By combining Eqs (20) and (21) and using Eq. (6b) we then find

〈 〉 + 〈 ′ ′ ′ 〉′ ′ ′
′ ≠′ ′
∑∑klm H c klm H k l mk l m

m mk l

A
A

A A A
A

A| $ | | $ |0 +

+ − +





+∑c E E U r sklm klm rs
kl

rs

A A
C
A∆ Αε ( , )

( )+ − + +





=∑c E U T r sklm rs
kl

rs
kl

rs

A
C
B ε Β ( , ) 0 . (22)

Equation (22) is size-consistent if the following two conditions are satis-
fied:

1) The A-dependent part coincides with the monomer equation for
|klmA〉 .

2) The B-dependent part vanishes.
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Effects of the VI Terms

In the MRDCEPA method the U- and T-matrices (see Eq. (10d)) are comple-
mentary to each other, i.e. U Trs

kl
rs
kl+ = 1 for all k, l, r and s. Therefore, using

Eq. (6a), we see that the B-dependent part in Eq. (22) vanishes.
The A-dependent part of Eq. (22) is given by

〈 〉 + 〈 ′ ′ ′ 〉′ ′ ′
′ ≠′ ′
∑∑klm H c klm H k l mk l m

m mk l

A
A

A A A
A

A| $ | | $ |0 +

+ − +





=∑c E E U r sklm klm rs
kl

rs

A A
C
A∆ Αε ( , ) 0 . (23)

This equation is indeed identical to the subsystem equation for |klmA〉
(see Eq. (9)). Therefore the MRDCEPA equations for the localised excita-
tions satisfy the size consistency condition. For the MR-ACEPA method the
1 − Trs

kl factor in Eq. (10e) also takes care of the exclusion of the VI terms.
However, as discussed below, the VI-allowed contributions to the diagonal
shift give rise to EPV-related size consistency errors in the MR-ACEPA
method.

For the MRCEPA0, MR-ACPF and MR-AQCC methods (Eqs (10a)–(10c)),
U rs

kl does not depend on the class indices and therefore Eq. (22) yields a
non-zero B-dependent contribution to the secular equation for |klmA,0B〉 ,
causing a deviation from size consistency.

Effects of the EPV Terms

Since the single reference (SR) ACPF and AQCC methods are not always
strictly size-consistent, we first analyse the effect of the EPV diagonal shift
corrections on the size consistency for the SR case.

In this case we have only (k,l) = (1,1) (single excitations) and (k,l) = (2,2)
(double excitations). Assuming HF orbitals we have ε(1,1) = 0: only the dou-
ble excitations contribute directly to the correlation energy. Effectively
there are no VI terms and we have

T r s T Trs
kl

rs

kl klε ε εΑ Β Β( , ) ( , ) ( , )∑ = + =11 2211 2 2 0 ,

since ε(1,1) = 0 and T kl
22 0= for both (k,l) = (1,1) and (k,l) = (2,2). According

to Eq. (22) the B-dependent part of the diagonal shift for a local excitation
on A should always be equal to the total correlation energy on B. Therefore
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the EPV terms must be included in such a way that they are effectively local
in the dimer calculation.

According to Eq. (22) the size consistency condition now reads

K K EAB A
C
B= + . (24)

In the dimer calculation the diagonal shift is given by

K d E En n
AB

C
A

C
B

A B
= ++ ( ) ,

whereas for the monomer calculation for A we have

K d En
A

C
A

A
= .

Therefore the size consistency condition, Eq. (24), may be written as

δK K E K d E E d E En n nEPV
A A

C
B AB

C
A

C
B

C
A

C
B

A A B
= + − = + − + =+ ( ) 0 . (25)

If this condition is not satisfied, the size consistency may be restored by
adding δKEPV

A to the diagonal shift KAB for a local excitation on A.
For the ACPF method the damping factor is given by

d
n

nn
ACPF = − 2

, (26)

where n equals the number of correlated electrons. By substituting this into
Eq. (25) we find

δK
n

n
E E

n n

n n
E EEPV

A A

A
C
A

C
B A B

A B
C
A

C
BACPF( ) ( )=

−
+ −

+ −
+

+ =
2 2

=
−

+
2

n E n E

n n n
A C

B
B C

A

A A B( )
. (27)

From the numerator on the right-hand side of Eq. (27) it follows that
δKEPV

A ACPF( ) vanishes if the correlation energies are proportional to the
numbers of electrons

E

E

n

n
C
A

C
B

A

B

= . (28)

The size consistency condition, Eq. (25), is satisfied if Eq. (28) holds. There-
fore the ACPF method is strictly size-consistent for identical subsystems.
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Moreover, even if the subsystems are different, Eq. (28) is usually almost
satisfied. Therefore in practice the ACPF method is nearly size-consistent.

Although the AQCC choice

d
n n

n nn
AQCC = − −

−
( )( )

( )
2 3

1
(29)

does not satisfy the size consistency condition even for identical subsys-
tems, the error turns out to be of the same order of magnitude as for the
ACPF method if the subsystems are different.

The Secular Equations for the Nonlocal Excitations

In this section the secular equations for the nonlocal excitations |klmA,pqnB〉
are considered. These excitations do not contribute directly to the correla-
tion energy. However, since they interact with the local excitations, they
do affect the coefficients of the latter and therefore they may be important
for the size consistency.

For the nonlocal excitations |klmA,pqnB〉 , where according to Eq. (13) the
indices are such that Trs

kl = 1, i.e. k + p ≤ 2 and l + q ≤ 2, we have

〈 + − − + 〉 =+ +∑klm klm H H E E U r srs
k p l q

rs

A B
A B 0 C, | $ $ ( , ) |, ε Ψ 0 . (30)

The non-zero contributions now correspond to those CFs in Ψ, which
contain either klm on A or pqn on B or both. This yields

c pqn H c T cklm klm p q
kl

p q
p q n

n n

A B
B

B A B〈 〉 + 〈′ ′
′ ′

′ ′ ′
′ ≠

∑ ∑| $ |0 pqn H p q nB
B

B| $ | ′ ′ ′ 〉 +

+ 〈 〉 + ′ ′
′ ′

′ ′ ′
′ ≠

∑ ∑c klm H c T cpqn pqn k l
pq

k l
k l m

m m

B A
A

A B A| $ |0 〈 + ′ ′ ′ 〉 +klm H k l mA
A

A| $ |

+ + − − + + +c c E E E E U r sklm pqn klm pqn rs
k p l q

r

A B A B
C
A

C
B∆ ∆ , ( , )ε

s
∑





= 0 . (31)

Note that in the second term in Eq. (31) the excitation level on B de-
pends on the excitation level on A because of the truncation by the Tp q

kl
′ ′

factor. Analogously, in the fourth term the excitation level on A depends
on the excitation level on B. Since the contributions in Eq. (31) which are
missing due to these truncations correspond to VI interactions on the
monomers, they cannot be compensated by the diagonal shift mechanism.
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Equation (31) is therefore not separable and therefore the MRCEPA methods
discussed here are not rigorously size-consistent.

A METHOD FOR ESTIMATING THE SIZE CONSISTENCY ERROR

Our method may also be used to derive correction formulas for the shifts
which will hopefully lead to better size consistency. Note, however, that
this method only works if localised orbitals are used and therefore it has no
general applicability. In this paper it will be used to estimate the size con-
sistency error in the dimer calculation as defined by

∆E E E ESC AB A B= − +( ) (32)

in terms of the size consistency deviation in the diagonal shift δKA,B. The
accuracy of our analysis is tested by comparing the total energy resulting
from a dimer calculation using size-consistency-corrected shifts to the sum
of the monomer energies. These results also enable us to compare various
contributions to the size consistency error, such as those originating from
ignoring the VI terms and those originating from the EPV corrections to the
shifts.

The size consistency error is estimated by applying either uncoupled or
coupled first-order perturbation theory. In the latter form the corrections to
the shifts are incorporated into the diagonalisation process. In this case the
coefficients are affected by the corrections to the shifts, which enables us to
study the effect of relaxation of the coefficients due to the errors in the
shifts.

First we consider the MRCEPA0, MR-ACPF and MR-AQCC methods. Here
the U rs

kl do not depend on the class indices. For MRCEPA0 we have Eq.
(10a), whereas for MR-ACPF and MR-AQCC the shift depends on the num-
ber of electrons, as in Eqs (26) and (29). Using Eq. (6a) we then obtain for
Eq. (22) for a local excitation on A

〈 〉 + 〈 ′ ′ ′ 〉′ ′ ′
′ ≠′ ′
∑∑klm H c klm H k l mk l m

m mk l

A
A

A A A
A

A| $ | | $ |0 +

[ ]+ − + ++c E E d Eklm klm n n
A A

C
A

C
A

A B
∆

+ − + +








 =+ ∑c E d E T p qklm n n pq

kl

pq

A
C
B

C
B

A B
ε Β ( , ) 0 . (33)
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For the monomer secular equation for |klmA〉 (see Eq. (9)), we now have

〈 〉 + 〈 ′ ′ ′ 〉′ ′ ′
′ ≠′ ′
∑∑klm H c klm H k l mk l m

m mk l

A
A

A A A
A

A| $ | | $ |0 +

[ ]+ − + =c E E d Eklm klm n
A A

C
A

C
A

A
∆ 0 (34)

The correction to the diagonal shift needed to restore the size consistency
for the secular equations for the local excitations is obtained by taking the
difference between Eqs (34) and (33)

δ εK k l d E E d E E T p qn n n pq
kl

pq

A
C
A

C
B

C
A

C
B B

A A B
( , ) ( ) ( , )= + − + −+ ∑ . (35)

The last contribution originates from the fact that the shift is taken to be
independent of the excitation classes. This is the VI-related contribution.
The other contributions represent the size consistency deviations implied
by using Eq. (10b) or (10c) for the EPV corrections. The deviations δKA(k,l)
in the diagonal shifts for the local excitations are given in Table I.

For the MRDCEPA and MR-ACEPA methods, we have δKA
VI = 0. For the

MRDCEPA method we also have δKA
EPV = 0. For the MR-ACEPA method,

however, the U rs
kl incorporate EPV damping factors (see Eq. (10e)). The ex-

plicit forms are derived from the data in Table I in lit.7 and are given in the
Appendix.

The first-order PT energy change due to the changes in the diagonal shifts
for the local excitations is given by

E K k l c K p q c
kl

klm
m pq

pqn
(I) A A B(local) = +∑ ∑ ∑δ δ( , ) ( ) ( , ) (2 B )2

n
∑ . (36)
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TABLE I
Diagonal shift corrections related to the effects of the local excitations

Method VI EPV

MRCEPA0/MR-ACPF/MR-AQCC – T p qpq
kl

pq

εB( , )∑ d E E d E En n nA A BC
A

C
B

C
A

C
B+ − ++ ( )

MRDCEPA 0 0

MR-ACEPA 0 see Appendix



The first-order PT energy change related to the nonlocal excitations is
given by

E c c K k p l qklm pqn
pqnklm

(I) A B AB(nonlocal) = + +∑∑ ( ) ( , )2 δ . (37)

Although according to Eq. (31) it is impossible to obtain strict size consis-
tency by modifying the diagonal shifts for the nonlocal excitations, an esti-
mate may be made by assuming that the correct order of magnitude is ob-
tained by only using the last term of the right-hand side of Eq. (31). If the
reference function is dominant in the correlated wave function we have

( )cklm
m

A 2 1∑ << and ( )c pqn
n

B 2 1∑ << (38)

The contribution to the size consistency error from the local excitations
is of the second order in the coefficients, whereas the contribution from the
nonlocal excitations is of the fourth order. Therefore in general the size
consistency deviation in the total energy due to the nonlocal contributions
may be expected to be much smaller than the contribution due to the local
excitations.

RESULTS AND DISCUSSION

Test calculations were performed for a model system of two ground-state O2
molecules at a separation of 1000 Å. For one molecule the internuclear dis-
tance ROO was fixed at 1.2 Å, whereas for the other molecule two values
were used: ROO = 1.2 Å and ROO = 1.6 Å. The calculations were performed
with an adapted version of the GAMESS-UK program system9.

For all calculations the standard DZP basis was used. For each molecule
the 1σg and 1σu MOs were frozen at the RHF level. The valence MOs were
determined by a CASSCF calculation including the |(core)4(inactive)61πux

2

1πuy
2 1πgx

1 1πgy
1 | and |(core)4(inactive)61πux

1 1πuy
1 1πgx

2 1πgy
2 | configurations, with

(core)4 = 1σ g
2 1σ u

2 and (inactive)6 = 2σ g
2 2σ u

2 3σ g
2 . All calculations were per-

formed within the spin-adapted formalism and the configuration sets in
both the monomer and dimer calculations were obtained without imposing
symmetry restrictions on the CAS reference space used for generating the
single and double excitations. The dimer calculations were performed for
the singlet, triplet and quintet O2( 3 Σ −

g )/O2( 3 Σ −
g ) states. The results appear to

be independent of the total spin.

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Size Consistency of Multireference CEPA Methods 651



In the calculations with ROO = 1.2 Å/ROO = 1.6 Å the correlation energies
of the two molecules are substantially different (Ecorr = 0.32 hartree for
ROO = 1.2 Å and Ecorr = 0.37 hartree for ROO = 1.6 Å). Since the numbers of
electrons in the various subshells do not change, this is a sensitive test of
the behaviour of the damping-factor-type EPV correction methods for non-
identical subsystems as used in the MR-ACPF, MR-AQCC and MR-ACEPA
methods (cf. Eq. (27) for MR-ACPF). The results are given in Tables II and III.

In Tables II and III, UPT indicates the results obtained by first-order un-
coupled perturbation theory, whereas CPT corresponds to coupled PT. The
corrections to the diagonal shifts are given in Table I. PT1 is obtained by
using only VI type corrections, whereas for PT2 the effects of including the
corrections due to EPV effects were added. For the second set of calculations
(nonidentical subsystems, Table III), no convergence could be obtained for
the MRCEPA0 and MR-ACPF methods. For ROO = 1.6 Å the MRCEPA0
method does not even converge for the monomer.

First we compare the uncoupled and coupled PT results. The most im-
portant effect of the coupled method is shown by the MR-ACPF result in
Table III. Here the dimer calculation does not converge due to intruder
state problems. This means that after some iterations the energy of some
excitation becomes lower than one of the important reference CFs, due to
an excessively large shift for this excitation. No such problems are encoun-
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TABLE II
Energies (hartree) and size consistency deviations ∆ESC (mhartree) for O2 (R = 1.2 Å)/O2 (R =
1.2 Å) for various MRCEPA variants. Edimer is the uncorrected MRCEPA energy for the dimer

Parameter MRCEPA0 MR-ACPF MR-AQCC MRDCEPA MR-ACEPA

A –150.005362 –149.998138 –149.992983 –149.999653 –149.990355

2*A –300.010724 –299.996276 –299.985966 –149.999306 –299.980710

Edimer –300.025556 –300.006900 –299.995068 –300.000133 –299.981093

∆ESC

Uncorrected –14.832 –10.624 –9.102 –0.827 –0.383

CPT1 –0.232 0.192 0.569 –0.827 –0.383

CPT2 –0.232 0.192 0.064 –0.827 –0.807

UPT1 –1.709 –0.495 0.101 –0.827 –0.383

UPT2 –1.709 –0.495 –0.367 –0.827 –0.753



tered with the more realistic diagonal shifts used in the other methods due
to a larger damping in the MR-AQCC method and avoiding the redundan-
cies in the MRDCEPA and MR-ACEPA methods. In the MR-ACPF/CPT calcu-
lations the diagonal shift is much smaller than in the uncorrected one, al-
lowing the CPT calculation to converge. UPT cannot be used here, since
there is no reference energy available and therefore in the following only
the CPT results will be discussed in detail.

Next we assess the accuracy obtained with the assumptions and approxi-
mations used in the previous section by comparing the CPT2 results to the
full size consistency deviation as given by Eq. (32). The full size consistency
error appears to depend strongly on the method used, ranging from
18 mhartree (MR-AQCC, Table III) to 0.4 mhartree (MR-ACEPA, Table II).
The full size consistency errors are much larger for the MRCEPA0, MR-ACPF
and MR-AQCC methods than for MRDCEPA or MR-ACEPA. The deviations
of the CPT2 results with respect to the full error amount to ca. 1 mhartree
for all calculations. From this we conclude that the residual errors gener-
ated by the nonlocal excitations, together with reorganisation effects in the
reference coefficients are all of the order of 1 mhartree, independently of
the method used.
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TABLE III
Energies (hartree) and size consistency deviations ∆ESC (mhartree) for O2 (R = 1.2 Å)/O2 (R =
1.6 Å) for various MRCEPA variants. Edimer is the uncorrected MRCEPA energy for the dimer

Parameter MRCEPA0 MR-ACPF MR-AQCC MRDCEPA MR-ACEPA

A –150.005362 –149.998138 –149.992983 –149.999653 –149.990355

B – –149.934812 –149.922112 –149.939820 –149.917317

A+B – –299.932950 –299.915095 –299.939473 –299.907672

Edimer – – –299.932967 –299.940848 –299.909088

∆ESC

Uncorrected – – –17.872 –1.375 –1.416

CPT1 – 0.518 0.844 –1.375 –1.416

CPT2 – 1.136 0.743 –1.375 –1.158

UPT1 – – 1.604 –1.375 –1.416

UPT2 – – 1.974 –1.375 –1.162



The relative importance of the VI and EPV-induced errors now follows
from a comparison of the CPT1 and CPT2 results. The data in Tables II
and III clearly show that the VI-induced CPT1 corrections, where needed,
are much larger than the EPV-induced changes when going from CPT1 to
CPT2. The CPT2 deviations are in fact of the same order of magnitude as
the residual errors, which cannot be avoided anyway. This shows that the
redundancies introduced by ignoring the excitation class dependence of
the diagonal shifts lead to large size consistency errors.

By incorporating the VI-induced correction terms (CPT1), much better
results are obtained for all single-shift methods: MRCEPA0, MR-ACPF and
MR-AQCC. The errors remaining after applying CPT1 are comparable in
magnitude to the MRDCEPA or MR-ACEPA errors, where the CPT1 correc-
tions are not needed.

CONCLUSIONS

From our results we conclude that:
1) The redundancies in the diagonal shift calculation for the MRCEPA0,

MR-ACPF and MR-AQCC methods give rise to large size consistency errors,
in contrast to the MRDCEPA and MR-ACEPA methods, where they are ex-
cluded from contributing to the diagonal shift.

2) The errors induced by the EPV damping factors in the MR-ACPF,
MR-AQCC and MR-ACEPA methods are much smaller. In fact they are of
the same magnitude as the unavoidable effects of the nonlocal excitations.

3) The exclusion of the VI terms while calculating the diagonal shifts also
minimizes the intruder state problem by avoiding excessively large shifts.

APPENDIX

The damping factor d kl rsn ni a, ( , )MR -ACEPA in Eq. (10e) is taken analogous to the
MR-ACPF and MR-AQCC EPV damping factors, Eqs (26) and (29); see also
Table I in lit.7 By using Eq. (25), δK d E E d E En n nEPV

A
C
A

C
B

C
A

C
B

A A B
= + − ++ ( ), with

the class (k,l) correlation contributions εA(k,l) and εB(k,l) instead of EC
A and

EC
B , respectively, the corresponding shift corrections are readily derived. The

results for δK k lA
EPV ( , ) are as follows.

ni
A = # of inactive electrons on A, ni

B = # of inactive electrons on B,

na
A = # of active electrons on A, na

B = # of active electrons on B
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